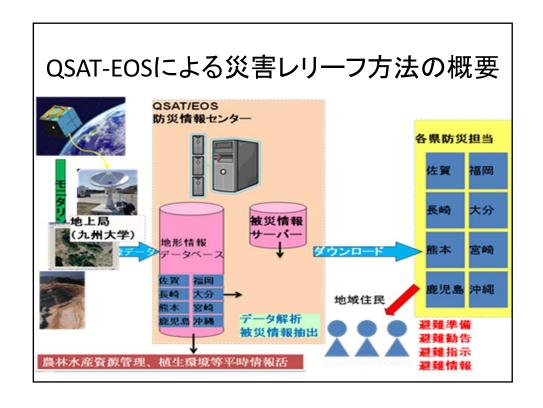
平成26年度第1回技術研修会 (公財)佐賀県建設技術支援機構 @アバンセホール(生涯学習センター) 平成26年7月2日13:30-16:30

地球観測衛星および地上計測システムによる防災

佐賀大学名誉教授 大学院工学系研究科特任教授 新井康平

はじめに

- 宇宙基本法→宇宙基本計画→宇宙庁
- 被災状況把握→防災(国際的取り組み→アジア防災 (Sentinel-Asia)、日本の役割)
- 東日本大震災における地球観測衛星の果たした役割 →地球観測衛星による被災状況把握→地球観測衛星の限界→地上観測網、事前評価、災害シミュレーション
- 地球観測衛星の現状(Alos-2:大地2号)
- 国土交通省防災ポータル
- 衛星および地上センサネットワークによる地すべりモニタシステム(レーザ測距の有効性および地すべり実験)
- センサーネットワークにおけるZigBeeの役割→建築物の危険度モニタシステム
- 超小型地球観測衛星(ほどよし、QSAT/EOS、CE-SAT等)


SAR搭載ALOS-2打ち上げ

• 5月24日(土)12時5分14秒「だいち2号」がH-IIAロケット24号機で打ち上げ

災害監視概念

- ■、地方自治体のハザードマップ→監視域の 特定(優先順位の高い順に観測頻度を割り振り)
- 複数衛星および機動的観測による高頻度観 測→幾何学的マッチング→変化(災害)の抽出 →気象データ、地上観測データ等の併用→避 難情報→(避難準備、勧告、指示)

QSAT-EOS概要

目的

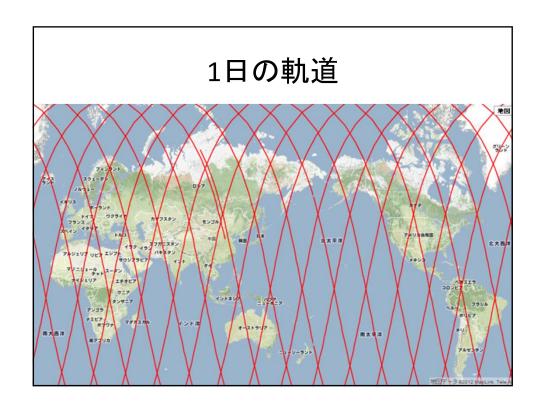
- 1. 汎用性の高い超小型衛星システムの実現
- 2. 地上の高分解能画像を取得し高速で地上へ伝送する
- 3. 将来的に5~10機の超小型衛星コンステレーションを目指す
- 4. 九州地域の大学と中小企業連合体で継続的開発体制を作る

開発方針

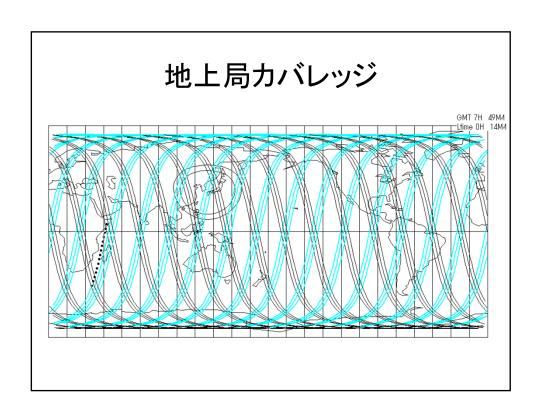
九州大学が開発してきたQSATの成果を基礎とし、上記目的実現のために必要な変更を加える。

主要変更箇所は

ミッション:地球観測ならびに3つのサブミッション

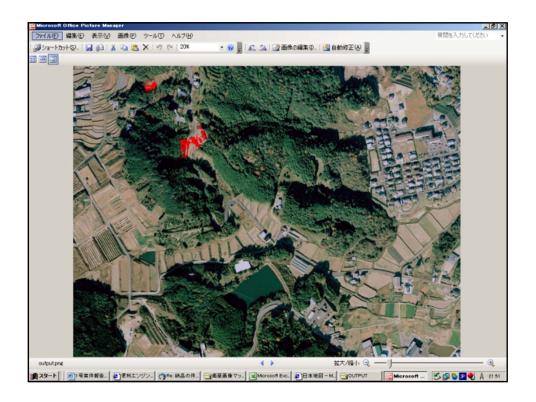

姿勢制御:精度0.1度を達成 通信:KSAT技術を使った高速伝送

電力:高効率セルの採用


また、寿命を1年から2年に延長(努力目標)

想定軌道

- 打上時刻 07:35:50 UTC、
- 衛星分離t=833.6、H=509.3km (RE=6378.13km)、
- 軌道半径(Semi-major axis) 6913.737163km = 高度534.61km、周期:95.24分、
- 軌道傾斜角:97.5度、離心率:0.004、
- 降交点通過地方時:午前11時、投入時 真近 点離角(True anomaly) 7.827117度


QSAT/EOS光学センサ

- 10kmx10kmの範囲を瞬時に、
- 約7mの分解能で
- 可視(緑(550nm)の波長)と近赤外(850nm)の 波長で観測する機能を有している。
- 1周当たり約200枚(最大)の地表面の画像を 取得

ミッション解析

- 被災地域・規模推定→平時におけるデータと 被災時のデータとの変化抽出
- 幾何学的忠実度、または、多時期画像間のマッチング精度

CE-SAT-I

望遠鏡カメラ(狭域)

形式 ; Catadioptric

主鏡径 ; φ400mm

焦点距離 ;3,700mm

検出器 ; EOS 5D mK Ⅲ

刈幅 ;6Km×4Km

GSD ;1m

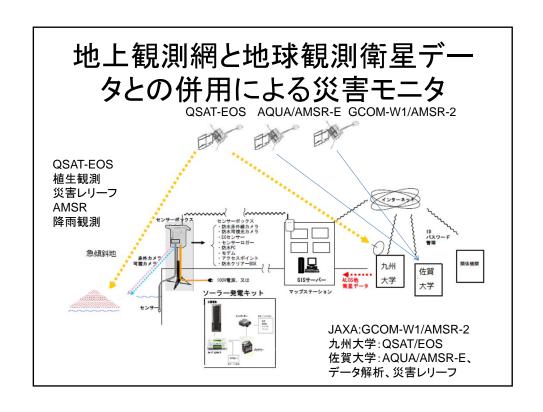
望遠鏡カメラ(広域); Power Shot S110

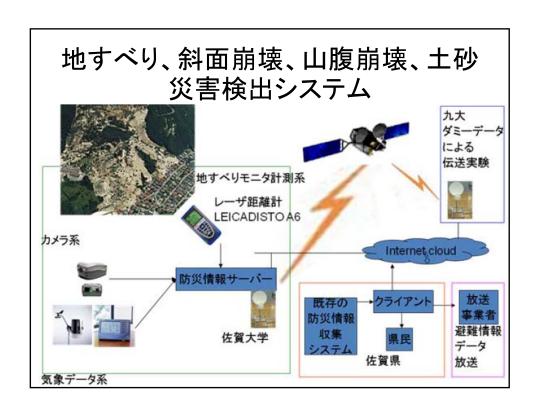
Canon

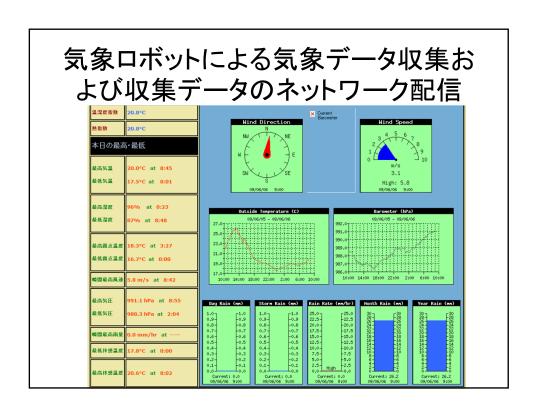
CANON ELECTRONICS INC. Space Technology Laboratory

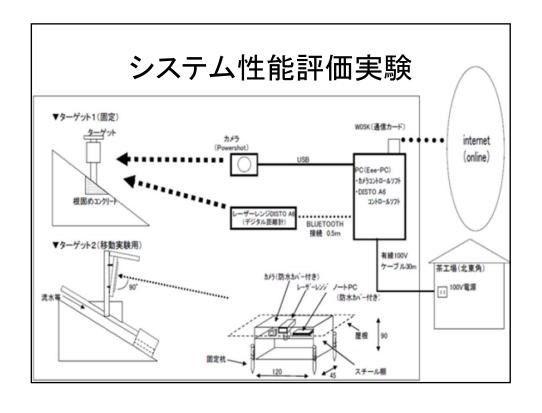
Proprietary and Confidentia

ほどよし1号							
撮影方式	プッシュブルーム方式						
地上分解能	6.7m						
バンド	B(450-520nm), G(520-600nm), R(630-690nm), NIR(780-890nm)						
信号ノイズ比	B(153), G(178), R(235), NIR(167)						
刈幅	27.8km						
最大連続撮影距離	179km						
ビット深度	12bit						

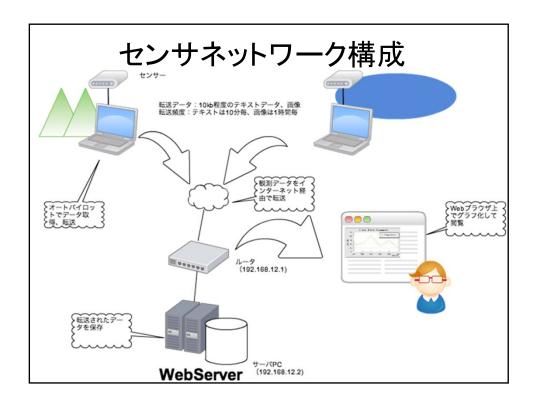

急傾斜地モニタリングシステム開発


- 佐賀県内の急傾斜地3箇所(ハザードマップ 最危険順にから3番目まで)におけるレー ザー距離計、カメラ、無線LANを介したネット ワーク伝送システムの設置
- 同上データのGISデータベース登録


急傾斜地モニタシステム


- 急傾斜地の GIS表示
- 気象データの 表示
- カメラモニタ の表示
- 衛星画像の 表示
- 防災情報通報システムとのインターフェース

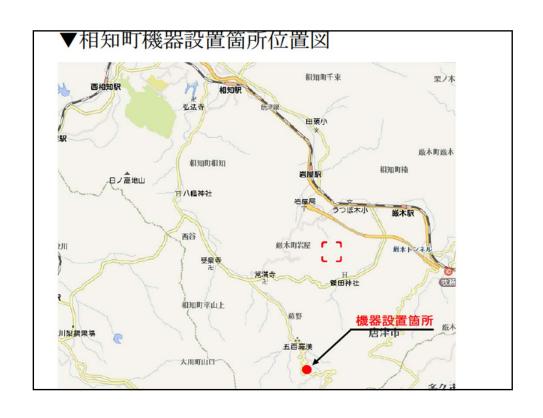
レーザ距離計による地すべりモニタ


• ターゲット レーザ距離計+カメラ+データ送信

30m離れた位置から+/-1mmの精度

		測定回数	誤差回数										
最多カウント 距離				-2mm	-1mm	0mm	+1mm	+2mm	+3mm				
30.283	0°	59	0	0	0	59	0	0	0				
30.253	20°	59	0	0	8	45	6	0	0				
30.222	40°	59	0	0	14	43	1	1	0				

急傾斜地モニタ


- 佐賀市富士町
- 唐津市相知町
- 伊万里市山代町
- 佐賀県茶業試験場

• 土砂災害実験:佐賀県茶業試験場

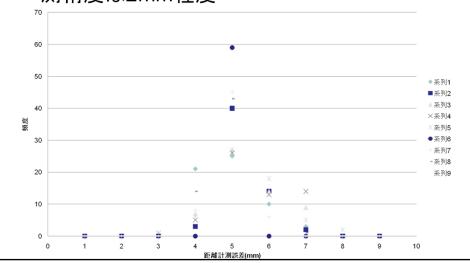
土砂災害(模擬降雨)実験

- 模擬降雨実験は荷台の傾斜を変え、なおかつ、 降雨を模擬した散水を上端から行い、斜面崩壊 のトリガリングとなる静止摩擦係数を計測
- 静止摩擦係数の計測においては、ターゲットの 重量は20.36kgとし、荒砂および真土のいずれか の上に置いた35x35cm の板に括り付けて設置
- ターゲットは固い岩盤と仮定し、砂質土は砂礫層と仮定
- ターゲットが落ちることは斜面崩壊となると仮定と

土砂災害実験:佐賀県茶業試験場

実験結果

- 斜面は傾斜角度41.672度(高さ:123cm、斜面長:185cm)であり、降雨量は20秒間の散水のため、2.5リットルの水量=2.5mm/hに相当する降雨
- 垂直抗力:F=mN=14Kg、砂質土のすべり摩擦係数m=0.7、N=20kg、静止摩擦係数:ターゲットが滑り落ちる傾斜角:41.672度
- 結局、山水開始から15秒後にターゲットが滑り落ちた(斜面崩壊)ため、25mm/hの降雨で2 秒後に斜面崩壊が起きることと等価


レーザー距離計による地すべり初 期微動の検出実験

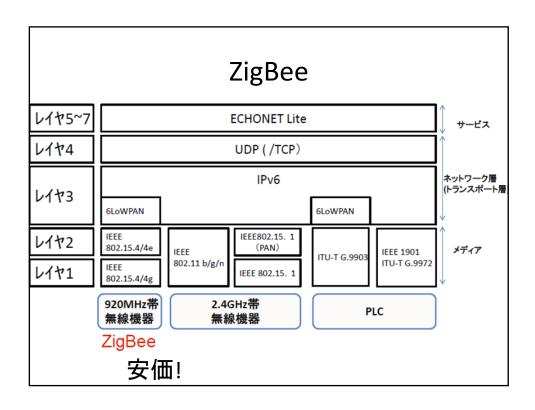
• 30m離れた所から40度の角度から計測して も誤差は1.5mm程度(茶色の反射板)

						٠,						,			
E 0.11E 0.	8.5.10° / 95#		: NICHE THE	誤差回数										実験No	
反射板色 最多カウント距離	角度誤差	測定回数	-5mm以上	-4mm	-3mm	-2mm	-1mm	0mm	+1mm	+2mm	+3mm	+4mm	+5mm以上	夫狈NC	
	13.362	0*													
茶		20°			距離不足に付き、測定不能										
		40°													
反射板色 最多カウント距離	是多力力、小兒蘇	角度誤差	測定回数	誤差回数											実験No
	TO STO STORE	70点款在		-5mm以上	-4mm	-3mm	-2mm	-1mm	0mm	+1mm	+2mm	+3mm	+4mm	+5mm以上	₩
	30.283	0*	57	0	0	0	0	7	27	14	9	0	0	(No.6
白	30.249	20°	59	0	0	0	1	5			14	0	0	(No.5
	30.223	40°	59	0	0	0	1	6	27	18	5	2	0		No.4
反射板色 最多カウント距	最多力力"小野難	角度誤差	測定回数	誤差回数									実験No		
	AK 973 JJ I BEME			-5mm以上	-4mm	-3mm	-2mm	-1mm	0mm	+1mm	+2mm	+3mm	+4mm	+5mm以上	24/2/140
	30.283	0*	59	0	0	0	0	0	59	0	0	0	0	(No.7
茶	30.253	20°	59	0	0	0	0	8	45	6	0	0	0		No.8
	30.222	40°	59	0	0	0	0	14	43	1	1	0	0	(No.9
反射板色	最多カウント距離	角度誤差	測定回数	誤差回数										実験No	
				-5mm以上	-4mm	-3mm	-2mm	-1mm	0mm	+1mm	+2mm	+3mm	+4mm	+5mm以上	200,140
茶	60.509	0*	59	0	0	0	0	2	56	1	0	0	0	0	No.13

距離計測誤差

すべての場合(反射板の色、距離、角度)の計 測精度は2mm程度

地すべりモニタリングシステム開発


- レーザー距離計を用いた急傾斜地モニタリングシステム(無線LAN によるインターネット端末までのデータ伝送を含む)を構築
- 急傾斜地に設置し、機能・性能精度評価
- 降雨によるレーザ光散乱の影響把握および 影響回避の手法確立
- 九州航空宇宙開発推進協議会

被災および避難情報通報システム

- 地上観測データ収集システム
- 気象データ収集システム
- 衛星データ収集システム
- 災害情報抽出(幾何補正:地理情報システム による表示→変化抽出)
- 被災情報の地方自治体への通報
- 災害対策本部による避難情報生成→市民への通報(放送事業者)

ZigBeeとは

- 国際標準規格IEEE802.15.4をベースにした、家 電向けの短距離通信技術
- データ転送速度は20kbps~250kbpsで、伝送距離は30-150m
- 同様の目的で使われているBluetoothに比べ、 低速で伝送距離も短いが、消費電力が少なく低 コストというメリット
- ZigBee機器同士でネットワーク(アドレス数: 65535)を形成できる点も、特徴
- 国内で使用できる周波数は電波法により2.4GHz 帯に限られ、特定無線設備としての技術証明が 必要になるなど、現在のところ家電で手軽に使 用できる環境は整えられていない(920MHz)

ZigBeeを使用した情報収集システム の特徴

ZigBee網と適所に配置した無線傾斜センサの組み合わせにより、構造情報の収集情報はリアルタイムで収集し、報告書を自動的に作成でき、その精度は改善報告書や作業意思決定の精度を上げ、安全性を向上

ZigBeeを使った無線センサ網の導入は短期間 で簡単

ZigBeeの適用範囲

- 換気空調/室温調節
- 構造物の保全監視
- 照明制御
- メータの自動読み取り
- 建築現場における作業安全(位置、姿勢、健康状態等を収集→危険を察知した場合、警報)

おわりに

- 地球観測衛星による災害モニタは高頻度観 測が可能となりつつあるので有効
- 衛星のみならず、地上観測センサーネット ワークによって災害モニタ
- 既存の防災無線・有線のみならず、責任ある 団体の多種類の通信・放送メディアによる避 難情報提供システムが重要
- 災害に強く、安心安全を守る国土づくりが重要(耐震・免震のみならず、揺れ検知、クラック検知等センサーネットワークの具備が重要)